Mostrando entradas con la etiqueta Víctor José Docampo Martínez. Mostrar todas las entradas
Mostrando entradas con la etiqueta Víctor José Docampo Martínez. Mostrar todas las entradas

jueves, 15 de mayo de 2014

Usan ADN para fabricar sensores nanométricos que detectan el cáncer

Ciertos cambios en el PH de nuestro organismo pueden indicar la presencia de células tumorales en él, pero son tan pequeños que no se pueden detectar. Ahora, un equipo de bioingenieros de Italia y Canadá ha fabricado usando ADN una máquina nanométrica que brilla al entrar en contacto con dichos niveles alterados de PH. Con ella, se podrían hacer diagnósticos más afinados; pero también suministrar fármacos de manera ajustada. 



Un equipo de bioingenieros de la Universidad Tor Vergata de Roma y de la Universidad de Montreal, en Canadá, han creado una herramienta microscópica que detecta los cambios químicos causados por las células cancerígenas, y reacciona a ellos. De esta manera, los señala para que puedan ser detectados.
En concreto, el dispositivo es un nanosensor (un sensor de tamaño nanométrico, es decir, 109 menor que el metro) fabricado a partir de ADN, capaz de medir las variaciones del PH a nanoescala. 


Una herramienta que mide cambios minúsculos


El pH es una medida de la acidez o la alcalinidad de cualquier solución, que va de cero a 14. En nuestro cuerpo, la sangre es ligeramente alcalina (ph de 7'35 a 7'45); mientras que en el estómago el PH es ácido, para posibilitar la digestión.


Como media, nuestros líquidos internos deben mantener un PH equilibrado. Si en ellos este es demasiado ácido, nuestras células pueden verse afectadas negativamente. Por otra parte, muchas biomoléculas de nuestro organismo, como las enzimas o las proteínas, están reguladas por pequeños cambios en el PH, que afectan a actividades biológicas tan importantes como la catálisis enzimática, el ensamblaje de las proteínas, la función de las membranas celulares o la muerte celular. Pero, además, existe una relación entre el cáncer y el PH: las células cancerosas a menudo muestran un PH más bajo en comparación con las células normales; y hay una diferencia entre el nivel del PH dentro de estas células (más alto) y el de su entorno.

Estas diferencias minúsculas, en el caso de los organismos vivos, se producen en áreas muy pequeñas, de “solo unos pocos cientos de nanómetros", explica el autor principal de la investigación, el profesor de la Universidad Tor Vergata, Francesco Ricci, en declaraciones recogidas por AlphaGalileo. Por eso son difíciles de detectar. De ahí la importancia de desarrollar “sensores o nanomáquinas que puedan medir esos cambios de pH a semejante escala”, añade Ricci. Con estas nanomáquinas se podrían hacer diagnósticos afinados; pero también crear imágenes microscópicas en vivo o suministrar fármacos de manera ajustada.


Sacando partido al ADN


Nanosensor de ADN que permite medir la variación
del PH a nanoescala. Imagen: Marco Tripodi.
Fuente: AlphaGalileo.
Los científicos aprovecharon el ADN porque éste “representa un material ideal” para estos fines, según explica el profesor de la Universidad de Montreal Alexis Vallée-Bélisle, otro de los autores del trabajo.

Los investigadores sacaron partido en concreto de una secuencia de ADN específica de triple hélice sensible al PH. Con ella diseñaron un nanosensor versátil, que puede ser programado para la fluorescencia, solo ante valores de PH específicos. Es decir, que la máquina ‘brilla’ –emite radiación- solo al entrar en contacto con ciertos niveles de PH. 


“La capacidad de programación (del nanosensor de ADN) representa una característica clave para aplicaciones clínicas, pues nos permite diseñar sensores específicos que envíen señales fluorescentes solo si el PH alcanza un valor concreto, vinculado, por ejemplo, a una enfermedad específica”, señalan los científicos. Estos esperan que, en el futuro, esta nanotecnología, recientemente patentado, ayude también al desarrollo de medios de suministro de fármacos novedosos que liberen medicamentos como los quimioterapéuticos solo en las cercanías de las células tumorales, para reducir así al máximo sus efectos secundarios. 


Minigenes artificiales que detectan la propensión al cáncer


El material genético se está revelando como una interesante ayuda para el diagnóstico del cáncer, a juzgar por este y otro trabajo reciente, realizado por científicos del Consejo Superior de Investigaciones Científicas (CSIC).

En este caso, los investigadores desarrollaron una nueva herramienta llamada “vector de splicing pSAD” (Splicing and disease, empalme y enfermedad), que permite crear minigenes híbridos (versiones simplificadas y artificiales de un gen) capaces de detectar anomalías en en los genes en BRCA1 y BRCA2, en un proceso de expresión génica conocido como empalme o splicing del ARN mensajero .

Estas anomalías pueden causar cáncer de mama y cáncer de ovario hereditarios, por lo que su detección potenciaría la prevención de la enfermedad.


miércoles, 2 de abril de 2014

FABRICARÁN VENDAJES INTELIGENTES USANDO CÉLULAS BIOLÓGICAS GUIADAS CON ELECTRICIDAD

Especialistas en ingeniería de tejidos descubren cómo controlar grupos celulares, e incluso fabricar estructuras con ellos, aplicando una corriente continua







La ingeniería de tejidos se sirve, entre otros métodos, de la combinación de células para mejorar o reemplazar funciones biológicas. Un equipo de especialistas de la Universidad de Berkeley en California (EEUU) ha logrado ahora combinar dichas células utilizando una corriente eléctrica. El avance supone un paso adelante hacia la creación de vendajes "inteligentes" que, además de proteger heridas, ayudarían a curarlas.



La ingeniería de tejidos es una rama de la bioingeniería que se sirve, entre otros métodos, de la combinación de células para mejorar o reemplazar funciones biológicas. 

En este campo, se han conseguido avances como el de crear grandes cantidades de hueso humano maduro para trasplantes o el de mejorar el crecimiento celular para su aplicación a la regeneración de tejidos. 

El logro podría establecer un impulso en ingeniería de tejidos y la creación de vendajes "inteligentes" que, además de proteger heridas, ayudarían a curarlas. 

La imagen superior muestra el conjunto de células epiteliales. Las líneas blancas en la imagen del centro marcan la corriente eléctrica que fluye de positivo a negativo sobre las células. La imagen inferior muestra cómo las células siguen el campo eléctrico: el color azul indica la migración hacia la izquierda, y el rojo señala movimiento hacia la derecha. Imágenes: Daniel Cohen. Fuente: UCBerkeley.



Un equipo de especialistas en esta disciplina, de la Universidad de Berkeley en California (EEUU), ha dado ahora un nuevo paso con el descubrimiento de una curiosa forma de combinar células. Utilizando una corriente eléctrica, los científicos lograron dirigir a voluntad el flujo de un conjunto celular. 

En los experimentos realizados por los científicos de la UCBerkeley, y descritos en la revista Nature Materials, se usó una lámina de células epiteliales, que son las que recubren todas las superficies libres del organismo y constituyen el revestimiento interno de las cavidades, órganos y conductos de nuestro cuerpo. 

Los científicos constataron que, mediante la aplicación de una corriente eléctrica de alrededor de cinco voltios por centímetro, podían estimular la migración de las células a lo largo del campo eléctrico, de corriente continua. 

Con la electricidad, los investigadores consiguieron desplazar los grupos celulares hacia la izquierda o hacia la derecha; que estos se separasen o que convergieran, e incluso que hicieran giros colectivos formando una “U”. También lograron crear formas elaboradas con las células, como un triceratops o el oso que hace de mascota de la Universidad. 

“Pastoreando” células 

"Estos son las primeras evidencias de que los campos de corriente continua se pueden utilizar para guiar deliberadamente la migración de una lámina de células epiteliales ", explica el principal autor del estudio, Daniel Cohen, en un comunicado de la UCBerkeley. 

"Hay muchos sistemas naturales cuyas propiedades y comportamientos surgen de las interacciones de un gran número de unidades individuales: las dunas de arena, las bandadas de pájaros… incluso las células de nuestros tejidos. Del mismo modo que los perros pastores controlan el comportamiento de una manada de ovejas, podríamos manipular a las células biológicas para la ingeniería de tejidos", sigue diciendo Cohen. 

Ya se había demostrado que la galvanotaxis o desplazamiento en función de las corrientes eléctricas podía servir para células individuales, pero aún no se había aclarado de qué forma podía influir en el movimiento celular colectivo. 

"La posibilidad de dirigir el movimiento de una masa de células tendría gran utilidad como herramienta científica en ingeniería de tejidos", señala otro de los autores del estudio, el ingeniero Michel Maharbiz. "En lugar de manipular una célula a la vez, podríamos desarrollar algunas reglas simples de diseño que proporcionasen una señal global para controlar los conjuntos de células". 

Este trabajo es fruto de un proyecto liderado por Maharbiz, en el que se pretende desarrollar nanomateriales electrónicos y sistemas bioelectrónicos flexibles para uso médico. 

En agosto de 2012, el proyecto recibió una beca de dos millones de dólares de la National Science Foundation estadounidense para la creación de dichos nanomateriales, que se prevé puedan implantarse en el cuerpo para ayudar a la cicatrización de heridas, y que sean posteriormente reabsorbidos por el organismo de manera segura.



Aplicaciones médicas 

Nuestros cuerpos están llenos de iones que fluyen y soluciones salinas, por lo que no es de extrañar que las señales eléctricas jueguen un papel importante en nuestra fisiología, en procesos como las transmisiones neuronales o la estimulación muscular.

Pero "el fenómeno eléctrico que estamos explorando se distingue de estos procesos, en que la corriente producida proporciona una señal para la migración de las células", explica Maharbiz. 

Los autores del estudio están explorando el papel de las señales bioeléctricas en el proceso de cicatrización de heridas, en base a un descubrimiento de 1843, que constató que las lesiones el cuerpo provocan un cambio en el campo eléctrico de la zona herida. 

Mediante la cartografía de los cambios en el campo eléctrico cuando se produce una lesión y cuando ésta se sana, los investigadores podrían desarrollar una tecnología que ayude a acelerar y mejorar el proceso de sanación. 

"Estos datos demuestran claramente que el tipo de control celular que necesitaríamos para un vendaje inteligente sería posible. La siguiente parte de nuestro trabajo se centrará en la adaptación de esta tecnología para su uso en lesiones reales ", concluye Cohen. 

En 2010, científicos de la Universidad de Bath, en el Reino Unido, también crearon un vendaje inteligente, aunque no tenía nada que ver con la manipulación celular. Éste simplemente era capaz de liberar bactericidas sobre las heridas en presencia de patógenos, para destruirlos.

martes, 4 de marzo de 2014

CHIP DE ULTRA BAJO CONSUMO QUE SE ALIMENTA DEL ENTORNO






Dos investigadores de la Universidad Pública de Navarra han sido premiados en un congreso internacional por un chip que incorpora un nuevo diseño de ultra bajo consumo, unos 50 millones de veces menor que el de una bombilla convencional, y que además se alimenta de elementos del entorno como la luz, las vibraciones o las    variaciones de temperatura.



Los investigadores de la Universidad Pública de Navarra Antonio López Martín e Iñigo Cenoz Villanueva han obtenido el premio al mejor artículo en la 7th International Conference on Sensing Technology (ICST), un foro sobre tecnología de sensores celebrado en Wellington (Nueva Zelanda) el pasado mes de diciembre. 


Microfotografía del chip, que tiene un tamaño aproximado de 1 milímetro cuadrado. Fuente: UPNA.


El trabajo premiado presenta un chip que incorpora un nuevo diseño de convertidor analógico digital de ultra bajo consumo, unos 50 millones de veces menor que el de una bombilla convencional.

Ese bajo consumo, explica la nota de prensa de la UPNA, de la que se hace eco el Instituto de la Ingeniería de España, permite al dispositivo ser alimentado con la reducida energía captada del entorno (luz, vibraciones, variaciones de temperatura, etc.). De esta forma, al no necesitar pilas para su funcionamiento, se logra autonomía energética. 

El congreso celebrado en Wellington es uno de los principales foros internacionales en el campo de la tecnología de sensores y sus aplicaciones. En esta última edición se presentaron 188 artículos de 38 países.



El trabajo premiado surgió a partir del proyecto fin de carrera de Cenoz, estudiante de ingeniería de telecomunicación, que fue dirigido por López Martín, catedrático del Departamento de Ingeniería Eléctrica y Electrónica y subdirector de la Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación.

Antonio López (izda.) e Iñigo Cenoz en el campus de la UPNA



Aplicación 

La aplicación principal del dispositivo desarrollado son las redes de sensores inalámbricas. Estas redes constan de dos elementos esenciales: los nodos de sensores, que detectan parámetros del ambiente o del individuo (temperatura, humedad, ritmo cardiaco, presencia, etc.) y los actuadores, que provocan acciones (apagado/encendido de dispositivos, generación de estímulos neurológicos, etc.). 

Sensores y actuadores se comunican entre sí y con otras redes como internet, por medio de ondas de radio, sin cables. Se trata de una tecnología que en los últimos años está adquiriendo gran auge debido a sus múltiples aplicaciones. 

Esta prometedora línea de investigación del grupo de Comunicaciones, Señal y Microondas de la UPNA fue reconocida ya en 2012 con el XII Premio Talgo a la Innovación Tecnológica. En aquella ocasión, el proyecto premiado estaba orientado a dotar de inteligencia al ecosistema ferroviario mediante redes de sensores inalámbricas de ultra bajo consumo, alimentadas cuando es posible mediante la energía ambiental disponible en los propios vagones de los trenes.